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Abstract

Most of Finite Difference (FD) methods used in seismic
modeling are based on fixed length spatial operators.
These operators are chosen observing computacional
cost, stability and dispersion criteria. In this work we
analyse a FD scheme with an adaptive spatial operator
which reduces the computational cost but not the
accuracy. The idea is to use long operators in low
velocity regions and short operators in high velocity
ones. The analysis is made in the unidimensional case,
but the results can be extended for 2D and 3D models.

Introduction

Seismic modeling simulates the wave propagation in
subsurface. One of the fundamental basis of seismic
modeling is the acoustic wave equation which requires,
with rare exceptions, efficient numerical methods to be
solved. Due to their simple implementation, algorithms
based on Finite Differences (FD) are preferred to solve
the acoustic wave equation (Liu and Sen, 2009, 2011;
Dablain, 1986; Kelly et al., 1976). In addition, if a FD
method satisfies all the criteria of stability and dispersion,
the numerical solution is of excelent quality.

If we are not concerned with computacional costs, we
can use a spatial grid based on the the minimum velocity.
As the source usually is fixed in the modeling, its main
frequency is also fixed and then the wavelength in the
region with low velocity is smaller than in the region with
high velocity. Therefore, the accuracy is greater in the
high velocity regions. There are many variants of FD
method to increase efficiency without decreasing accuracy,
or to increase accuracy without decreasing efficiency or to
increase both efficiency and accuracy see, e.g., (Virieux,
1984, 1986; Finkelstein and Kastner, 2007; Bartolo et al.,
2012).

For fixed spatial and time steps, when we use the same
length for the spatial operator of the FD scheme, we reach
greater accuracy in higher velocity regions than in lower
ones. Therefore, it would be more efficient if we could
choose the length of the spatial operator according to the
velocity. In this work we analyse one approach introduced
by Liu and Sen (2011), based on a FD scheme with
an adaptive spatial operator. The length of the spatial
operator is chosen based on the analysis of the stability

and dispersion in each velocity region, in such a way that
the length decreases with increasing velocity. Numerical
examples illustrate the approach.

Finite Difference Methods

Let x∈Rn (n= 1,2,3) the space variable , t ∈R the temporal
variable and c the function which describes the velocity
of propagation in the acoustic model. The homogeneous
(without source term) acoustic wave equation is given by

1
c(x)2 Utt(x, t)−∆U(x, t) = 0, (1)

where U(x, t) is the scalar wavefield, and ∆ denotes the
Laplacian operator. We will analyse the case n = 1, but the
results can be easily extended for n = 2 and n = 3. Applying
the a second-order FD operator in time and a (2M)th-order
FD operator in space, we get
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where uk
j =U(x j, tk), x j = x0+ j∆x, tk = k∆t, with j = 0,1, . . . ,J

and k = 0, . . . ,K. The coefficients am, j are given by (Liu and
Sen, 2009; Finkelstein and Kastner, 2007)
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where r j = c(x j)∆t/∆x are the Courant numbers.
Substituting equations (2) and (3) into equation (1),
we obtain the following recursion formula,
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Dispersion and Stability Analysis

The dispersion occurs when the phase velocity v j and
velocity c j are different. The difference is measured by the
ratio between them, given by

ψ j =
v j

c j
=

ϕ j/ξ

c j
, (7)
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where ξ is the wavenumber and ϕ j is the dispersion
angular frequency determined by plane wave theory
applied to the recursion formula (6). Taking

uk
j = ei(ξ x j−ϕ jtk), (8)

and substituting it into equation (6), we find
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where γ = ξ ∆x. Therefore,
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2
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The stability of the method can be obtained by the
eigenvalue analysis of the transition matrix G j, defined from
the relation (

uk
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)
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)
, (11)

which can be obtained by the usual Von Neumman analysis
of equation (6). The result is
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)
, (12)

where

g j = 2+2r2
j
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The eigenvalues of G j are given by

α± =
g j±

√
g2

j −4

2
. (14)

Therefore, if |g| < 2 we have |α±| < 1, and then the
recursion is stable. Assuming that, in general, the error
increases with the wavenumber, we can consider the
Nyquist wavenumber

ξNyq =
π

∆x
(15)

as the maximum value for ξ . Hence, for that value

g j = 2−4r2
j
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∑
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where M1 is the integer part of M. Concluding, the one-
dimensional stability condition is∣∣∣∣∣2−4r2

j
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Since from equation (4) we have a2m−1, j > 0, the method is
stable for

r j <
( M1

∑
m=1

a2m−1, j

)−1/2
. (18)

In Liu and Sen (2009) they show that for r ≤ 1 the above
inequality is satisfied.

Figures 1 and 2 depicts the dispersion curves, i.e., the
variation of ψ with γ, in the cases M = 2 and M = 16 for
some values of r in the interval (0,1). One can observe
that the region for γ that makes ψ ≈ 1 extends with the
increasing of M.

Figure 1: Dispersion curves for M = 2.

Figure 2: Dispersion curves for M = 16.

The Choice for ∆x, ∆t and M

Before presenting the method that chooses the length
operator, we will explain why ∆x can be fixed without loss of
accuracy or stability. Based on Figures 1 and 2, for given
ε > 0 and M ≥Mmin ≥ 1, there exist γmax and rmax such that,

|ψ−1| ≤ ε if γ ≤ γmax and r ≤ rmax. (19)

Denoting by λ the wavenumber and f the frequency, we
can write

γ = ξ ∆x =
2π∆x

λ
=

2π f ∆x
c

. (20)

Assuming that the maximum frequency is fmax and the
minimum velocity is cmin, we have that

γ ≤ γmax if ∆x≤ γmaxcmin

2π fmax
. (21)

Once ∆x is chosen, ∆t can be given by

∆t ≤ ∆x rmax

cmax
, (22)

where cmax is the maximum velocity. Remember that for the
FD scheme to be stable is necessary that rmax < 1.

For example, let us consider the case of fmax = 30 Hz,
cmin = 1.5 km/s, cmax = 4 km/s, and the tolerance for the
dispersion ε = 0.05. For Mmin = 2, from Figure 1 we can
choose γmax = 2 and rmax = 0.5. Therefore, we can take
∆x≈ 15 m and ∆t ≈ 2 ms.

Now, let us explain how to choose the length operator M j
according to the velocity c j. For a fixed M the error in the
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FD scheme can be measured by the difference between
FD and exact propagation times,

µ(M,c j) =
∆x
v j
− ∆x

c j
=

∆x
c j

( 1
ψ j
−1
)
, (23)

where ψ j is given by equation (10) with

γ =
2π fmax∆x

c j
. (24)

Therefore, for a fixed maximum error η > 0, we choose M j
as the minimum M ≥Mmin such that

µ(M,c j)≤ η . (25)

Following the numerical example above, in Figure 3 we
show the values of M j according to equation (25) for
different values of c j and η .

Figure 3: Values of the length operator M j for different
values of c j and η .

Conclusions

The described approach finds differents values for the
length of the spatial operator of a FD scheme for the
unidimensional wave equation according to the velocity.
When the velocity increases the length decreases. Then,
we can expect that the computational cost for the FD
recursion formula will be reduced when compared with FD
schemes with fixed length operators.
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